Các công thức về cấp số cộng đầy đủ nhất hay nhất | Toán lớp 11.



Các công thức về cấp cho số nằm trong vừa đủ nhất hoặc nhất

Bài ghi chép Các công thức về cấp cho số nằm trong vừa đủ nhất Toán lớp 11 hoặc nhất bao gồm 4 phần: Định nghĩa, Công thức, Kiến thức không ngừng mở rộng và Bài tập luyện minh họa vận dụng công thức vô bài xích sở hữu điều giải cụ thể gom học viên dễ dàng học tập, dễ dàng ghi nhớ Các công thức về cấp cho số nằm trong vừa đủ nhất.

1. Lý thuyết

Bạn đang xem: Các công thức về cấp số cộng đầy đủ nhất hay nhất | Toán lớp 11.

a) Định nghĩa: (un) là cấp cho số nằm trong khi un+1 = un + d, n ∈ N* (d gọi là công sai)

Nhận xét:

- Cấp số nằm trong (un) là một trong những sản phẩm số tăng khi và chỉ khi công sai d > 0. 

- Cấp số nằm trong (un) là một trong những sản phẩm số tách khi và chỉ khi công sai d < 0. 

- điều đặc biệt, khi d = 0 thì cấp cho số nằm trong là một trong những sản phẩm số ko thay đổi (tất cả những số hạng đều vì thế nhau). 

b) Số hạng tổng quát mắng của cấp cho số cộng (un) được xác lập vì thế công thức: 

un = u1 + (n – 1)d với n ∈ N*, n ≥ 2.

c) Tính chất:

Ba số hạng uk-1, uk, uk+1 (k ≥ 2) là phụ vương số hạng liên tục của cấp cho số nằm trong khi và chỉ khi 

Các công thức về cấp cho số nằm trong vừa đủ nhất hoặc nhất | Toán lớp 11

d) Tổng n số hạng trước tiên Sđược xác lập vì thế công thức:

Các công thức về cấp cho số nằm trong vừa đủ nhất hoặc nhất | Toán lớp 11

2. Công thức

- Công thức tính tính công sai: d = un+1 – un với n ∈ N*.

- Công thức lần số hạng tổng quát: un = u1 + (n – 1)d với n ∈ N*, n ≥ 2. 

- Tính hóa học của 3 số hạng uk-1, uk, uk+1 (k ≥ 2) liên tục của cấp cho số cộng: Các công thức về cấp cho số nằm trong vừa đủ nhất hoặc nhất | Toán lớp 11

- Tổng n số hạng trước tiên của cấp cho số cộng: Các công thức về cấp cho số nằm trong vừa đủ nhất hoặc nhất | Toán lớp 11

3. Ví dụ minh họa

Ví dụ 1: Cho cấp cho số nằm trong (un) thỏa mãn: Các công thức về cấp cho số nằm trong vừa đủ nhất hoặc nhất | Toán lớp 11 

a) Xác toan công sai và số hạng trước tiên của cấp cho số nằm trong.

b) Xác toan công thức số hạng tổng quát mắng của cấp cho số nằm trong.

c) Tính số hạng loại 100 của cấp cho số nằm trong. 

d) Tính tổng 15 số hạng trước tiên của cấp cho số nằm trong.

Lời giải

a) Gọi d là công sai của cấp cho số nằm trong, tớ có: 

Xem thêm: Tỷ giá ngoại tệ hối đoái | Sacombank

Các công thức về cấp cho số nằm trong vừa đủ nhất hoặc nhất | Toán lớp 11

Vậy công sai d = 3 và số hạng trước tiên u1 = 1. 

b) Số hạng tổng quát: un = u1 + (n – 1)d = 1 + (n – 1).3 = 3n – 2.

c) Số hạng loại 100 là: u100 = 3.100 – 2 = 298.

d) Tổng 15 số hạng đầu tiên: 

Các công thức về cấp cho số nằm trong vừa đủ nhất hoặc nhất | Toán lớp 11

Ví dụ 2: Cho cấp cho số nằm trong (un) thỏa mãn: un = 2n – 3.

a) Xác toan công sai của cấp cho số cộng

b) Số 393 là số hạng loại từng nào của cấp số nằm trong.

c) Tính S = u1 + u3 + u5 + … + u2021

Lời giải

a) Ta có: un + 1 = 2(n + 1) – 3 = 2n – 1

Công sai của cấp cho số cộng: d = un+1 – un = (2n – 1) – (2n – 3) = 2

b) Gọi số hạng loại k của cấp cho số nằm trong là 393, tớ sở hữu uk = 393. 

Khi đó: 2k – 3 = 393. Suy đi ra k = 198.

Vậy số 393 là số hạng loại 198 của cấp cho số nằm trong.

c) Ta có: u1 = 2 . 1 – 3 = – 1

Dãy số là (vn): u1; u3; u5; … u2021 là cấp cho số cùng theo với số hạng trước tiên là u1 = – 1 và công sai d’ = u3 – u1 = 2d = 4

Dãy (vn) có: (2021 – 1) : 2 + 1 = 1011 số hạng

Vậy tổng Các công thức về cấp cho số nằm trong vừa đủ nhất hoặc nhất | Toán lớp 11

Xem tăng những Công thức Toán lớp 11 cần thiết hoặc khác:

  • Công thức tính công sai của cấp cho số cộng

  • Công thức lần số hạng tổng quát mắng của cấp cho số cộng

  • Công thức tính tổng n số hạng của cấp cho số cộng

    Xem thêm: Chỉ số RDW hơi thấp, MPV cao có sao không?

  • Các công thức về cấp cho số nhân

  • Công thức tính công bội của cấp cho số nhân

Săn shopee siêu SALE :

  • Sổ xoắn ốc Art of Nature Thiên Long color xinh xỉu
  • Biti's đi ra khuôn mẫu mới nhất xinh lắm
  • Tsubaki 199k/3 chai
  • L'Oreal mua 1 tặng 3

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi đua, bài xích giảng powerpoint, khóa huấn luyện và đào tạo giành riêng cho những thầy cô và học viên lớp 12, đẩy đầy đủ những cuốn sách cánh diều, liên kết trí thức, chân mây tạo ra bên trên https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official